

No. 04.14/10.4.1

P 1/2

PILLAR FIRE HYDRANT NH2...

<Two in one = hydrant + isolating pre valve>

 ϵ

PILLAR FIRE HYDRANT NH2...

No. 04.14/10.4.1

<Two in one = hydrant + isolating pre valve>

- * Secure = Complied with the requirements of the applicable standards EN 14384 = CE
- * Certificate: "EC CERTIFICATE OF CONFORMITY"
- * Purpose: Taking water from underground water pipes for fire protection and communal needs.

Technical characteristics:

* nominal openings	(DN 100; DN150) mm			
* nominal pressure		Di=1x100	Di=2x65	
* breaking torque (due to the force "F")≈15x10 ³ Nm		Determined		
* flow ratio	KV [m³/h] ———	At terms: with pr	At terms: with pre valve; Hi=2000	
* isolating pre valve	լ ⊢-►	252	265	
* drainage system	<u>_</u>	Allowed		
* outlet openings	Browse			
* outlet height	"indication order"	- min 160	min 140	
* type of outlet connectors				
* weight $\sim (84 \div 96)$ daN for Hi (1200 ÷ 2000) mm				
* materials:				
- hydrant bodycas	t iron / stainless steel - sp	indle	stainless steel	
- obturator seat	brass - se	al	elastomers	

Advantages:

- * Repair of the hydrant, while supply pipeline remains in function,
- * Replacement of obturator's seal: supply pipeline remains in function, without excavation of ground and without disassembling of the hydrant body,
- * Prevented damage of supply pipeline = breaking place 5.1 due to the force "F",
- * Automatic stop of water leakage, when broken due to the force "F",
- * Activation without any special tools, reversing the cap on top of hydrant,
- * Possibility to block unauthorized activation, fixing of selected flow,
- * Isolating pre valve inside of hydrant, automatic, self-blocking, which allows:
 - to leave out special isolating valve in front of hydrant,
 - lower cost of acquisition and maintenance of hydrant network,
 - the usage of hydrant even when the obturator is defective,
 - installation of hydrant close to, even directly above, inlet pipeline,
- * Obturator's seal is conical, self-rinsing = prevented from retention of the dirt = longer service life of seal,
- * Threaded part of obturator is: out of water flow, permanently lubricated, without maintenance during entire service life,
- * High strength of seal and hydrant body, MsT > 250 Nm,
- * Easy activation: class 1, MOT < 40 Nm (max. allowed 130 Nm; class 3),
- * Quick activation: 1 turn until water appearance, 10 turns until maximum flow (max. allowed 15 turns),
- * High reliability of drainage system = two outlet openings, and self-rinsing of drainage valve,
- * Easy correctness control of drainage valve and obturator,
- * Leaktightness of seal even after 1000 activations,
- * Amount of remaining water in hydrant body, < 90 cm³ (max. allowed 150 cm³),
- * Quick drainage, (4-5,5) min, at Hi=(1200-2000) mm (max. allowed 10 min.),
- * Easy replacement of obturator's seat,
- * Access to the drainage valve; only partial excavation, and without disassembling of hydrant body.

Documents with delivery of hydrant:

- * Declaration of Performance
- * Instruction for safety work (installation, handling, inspection, maintenance)

Hydrant flow chart:

- $Q = K_v \times (1000\Delta p / \rho)^{1/2}$
- flow...... $Q = [m^3/h]$
- flow ratio..... $K_v = [m^3/h]$
- pressure difference..... $\Delta p = [bar]$
- water density...... $\rho = [kg/m^3]$